Page images
PDF
EPUB

to him, will by their natural action, as seen in other cases, produce the effects in question. The events which he accounts for by his hypothetical cause, are, he holds, of the same kind as those which such a cause is known to produce. Kepler, in ascribing the planetary motions to magnetism, Descartes, in explaining them by means of vortices, held that they were referring celestial motions to the causes which give rise to terrestrial motions of the same kind. The question is, Are the effects of the same kind? This once settled, there will be no question about the propriety of assigning them to the same cause. But the difficulty is, to determine when events are of the same kind. Are the motions of the planets of the same kind with the motion of a body moving freely in a curvilinear path, or do they not rather resemble the motion of a floating body swept round by a whirling current? The Newtonian and the Cartesian answered this question differently. How then can we apply this Rule with any advantage?

13. To this we reply, that there is no way of escaping this uncertainty and ambiguity, but by obtaining a clear possession of the ideas which our hypothesis involves, and by reasoning rigorously from them. Newton asserts that the planets move in free paths, acted on by certain forces. The most exact calculation gives the closest agreement of the results of this hypothesis with the facts. Descartes asserts that the planets are carried round by a fluid. The more rigorously the conceptions of force and the laws of motion are applied to this hypothesis, the more signal is its failure in reconciling the facts to one another. Without such calculation, we can come to no decision between the two hypotheses. If the Newtonian hold that the motions of the planets are evidently of the same kind as those of a body describing a curve in free space, and therefore, like that, to be explained by a force acting upon the body; the Cartesian denies that the planets do move in free space. They are, he maintains, immersed in a plenum. It is only when it appears that comets pass through this plenum in all

[ocr errors]

directions with no impediment, and that no possible form and motion of its whirlpools can explain the forces and motions which are observed in the solar system, that he is compelled to allow the Newtonian's classification of events of the same kind.

Thus it does not appear that this Rule of Newton can be interpreted in any distinct and positive manner, otherwise than as enjoining that, in the task of induction, we employ clear ideas, rigorous reasoning, and close and fair comparison of the results of the hypothesis with the facts. These are, no doubt, important and fundamental conditions of a just induction; but in this injunction we find no peculiar or technical criterion by which we may satisfy ourselves that we are right, or detect our errors. Still, of such general prudential rules, none can be more wise than one which thus, in the task of connecting facts by means of ideas, recommends that the ideas be clear, the facts, correct, and the chain of reasoning which connects them, without a flaw.

14. Of the Third Rule.-- The Third Rule, that "qualities which are observed without exception be held to be universal," as I have already said, seems to be intended to authorize the assertion of gravitation as a universal attribute of matter. We formerly stated, in treating of Mechanical Ideas, that this application of such a Rule appears to be a mode of reasoning far from conclusive. The assertion of the universality of any property of bodies must be grounded upon the reason of the case, and not upon any arbitrary maxim. Is it intended by this Rule to prohibit any further examination how far gravity is an original property of matter, and how far it may be resolved into the result of other agencies? We know perfectly well that this was not Newton's intention; since the cause of gravity was a point which he proposed to himself as a subject of inquiry. It would certainly be very unphilosophical to pretend, by this Rule of Philosophizing, to prejudge the question of such hypotheses as that of Mosotti,

5 History of Ideas, b, iii. c. X.

That gravity is the excess of the electrical attraction over electrical repulsion, and yet to adopt this hypothesis, would be to suppose electrical forces more truly universal than gravity; for according to the hypothesis, gravity, being the inequality of the attraction and repulsion, is only an accidental and partial relation of these forces. Nor would it be allowable to urge this Rule as a reason of assuming that double stars are attracted to each other by a force varying according to the inverse square of the distance; without examining, as Herschel and others have done, the orbits which they really describe. But if the Rule is not available in such cases, what is its real value and authority and in what cases are they exemplified?

15. In a former work, it was shown that the fundamental laws of motion, and the properties of matter which these involve, are, after a full consideration of the subject, unavoidably assumed as universally true. It was further shown, that although our knowledge of these laws and properties be gathered from experience, we are strongly impelled, (some philosophers think, authorized,) to look upon these as not only universally, but necessarily true. It was also stated, that the law of gravitation, though its universality may be deemed probable, does not apparently involve the same necessity as the fundamental laws of motion. But it was pointed out that these are some of the most abstruse and difficult questions of the whole of philosophy; involving the profound, perhaps insoluble, problem of the identity or diversity of Ideas and Things. It cannot, therefore, be deemed philosophical to cut these Gordian knots by peremptory maxims, which encourage us to decide without rendering a reason. Moreover, it appears clear that the reason which is rendered for this Rule by the Newtonians is quite untenable; namely, that we know extension, hardness, and inertia, to be universal qualities of bodies by experience alone, and that we have the same

Ibid. b. iii. c. ix. x. xi.

evidence of experience for the universality of gravitation. We have already observed that we cannot, with any propriety, say that we find by experience all bodies are extended. This could not be a just assertion, unless we conceive the possibility of our finding the contrary. But who can conceive our finding by experience some bodies which are not extended? It appears, then, that the reason given for the Third Rule of Newton involves a mistake respecting the nature and authority of experience. And the Rule itself cannot be applied without attempting to decide, by the casual limits of observation, questions which necessarily depend upon the relations of ideas.

16. Of the Fourth Rule.-Newton's Fourth Rule is, that "Propositions collected from phenomena by induction, shall be held to be true, notwithstanding contrary hypotheses; but shall be liable to be rendered more accurate, or to have their exceptions pointed out, by additional study of phenomena." This Rule contains little more than a general assertion of the authority of induction, accompanied by Newton's usual protest against hypotheses.

The really valuable part of the Fourth Rule is that which implies that a constant verification, and, if necessary, rectification, of truths discovered by induction, should go on in the scientific world. Even when the law is, or appears to be, most certainly exact and universal, it should be constantly exhibited to us afresh in the form of experience and observation. This is necessary, in order to discover exceptions and modifications if such exist and if the law be rigorously true, the contemplation of it, as exemplified in the world of phenomena, will best give us that clear apprehension of its bearings which may lead us to see the ground of its truth.

The concluding clause of this Fourth Rule appears, at first, to imply that all inductive propositions are to be considered as merely provisional and limited, and never secure from exception. But to judge thus would be to underrate the stability and generality of scientific truths; for what man of science can suppose that we

shall hereafter discover exceptions to the universal gravitation of all parts of the solar system? And it is plain that the author did not intend the restriction to be applied so rigorously; for in the Third Rule, as we have just seen, he authorizes us to infer universal properties of matter from observation, and carries the liberty of inductive inference to its full extent. The Third Rule appears to encourage us to assert a law to be universal, even in cases in which it has not been tried; the Fourth Rule seems to warn us that the law may be inaccurate, even in cases in which it has been tried. Nor is either of these suggestions erroneous; but both the universality and the rigorous accuracy of our laws are proved by reference to Ideas rather than to Experience; a truth, which, perhaps, the philosophers of Newton's time were somewhat disposed to overlook.

17. The disposition to ascribe all our knowledge to Experience, appears in Newton and the Newtonians by other indications; for instance, it is seen in their extreme dislike to the ancient expressions by which the principles and causes of phenomena were described, as the occult causes of the Schoolmen, and the forms of the Aristotelians, which had been adopted by Bacon. Newton says, that the particles of matter not only possess inertia, but also active principles, as gravity, fermentation, cohesion; he adds, "These principles I consider not as Occult Qualities, supposed to result from the Specific Forms of things, but as General Laws of Nature, by which the things themselves are formed: their truth appearing to us by phenomena, though their causes be not yet discovered. For these are manifest qualities, and their causes only are occult. And the Aristotelians gave the name of occult qualities, not to manifest qualities, but to such qualities only as they supposed to lie hid in bodies, and to the unknown. causes of manifest effects: such as would be the causes of gravity, and of magnetick and electrick attractions,

7 Opticks, qu. 31.

« PreviousContinue »