Page images
PDF
EPUB

ANALYSIS OF LIGHT.

appears of a dazzling white. The light which it now emits is similar to that of the sun.

By means of a prism Sir Isaac Newton unravelled the texture of solar light, and by the same simple instrument we can investigate the luminous changes of our platinum wire. In passing through the prism all its rays (and they are infinite in variety) are bent or refracted from their straight course; and as different rays are differently refracted by the prism, we are by it enabled to separate one class of rays from another. By such prismatic analysis Dr Draper has shown, that when the platinum wire first begins to glow, the light emitted is a pure red. As the glow augments the red becomes more brilliant, but at the same time orange rays are added to the emission. Augmenting the temperature still further, yellow rays appear beside the orange, after the yellow green rays are emitted, and after the green come, in succession, blue, indigo and violet rays. To display all these colours at the same time the platinum wire must be white-hot: the impression of whiteness being in fact produced by the simultaneous action of all these colours on the optic nerve.

In the experiment just described we began with a platinum wire at an ordinary temperature, and gradually raised it to a white heat. At the beginning, and before the electric current had acted

at all upon the wire, it emitted invisible rays. For some time after the action of the current had commenced, and even for a time after the wire had become intolerable to the touch, its radiation was still invisible. The question now arises,-What becomes of these invisible rays when the visible ones make their appearance? It will be proved in the sequel that they maintain themselves in the radiation; that a ray once emitted continues to be emitted when the temperature is increased, and hence the emission from our platinum wire, even when it has attained its maximum brilliancy, consists of a mixture of visible and invisible rays. If, instead of the platinum wire, the earth itself were raised to incandescence, the obscure radiation which it now emits would continue to be emitted. To reach incandescence the planet would have to pass through all the stages of non-luminous radiation, and the final emission would embrace the rays of all these stages. There can hardly be a doubt that from the sun itself, rays proceed similar in kind to those which the dark earth pours nightly into space. In fact, the various kinds of obscure rays emitted by all the planets of our system are included in the present radiation of the sun.

The great pioneer in this domain of science was Sir William Herschel. Causing a beam of solar light

THE SOLAR SPECTRUM.

5

to pass through a prism he resolved it into its coloured constituents; he formed what is technically called the solar spectrum. Exposing thermometers to the successive colours he determined their heating power, and found it to augment from the violet or most refracted end, to the red or least refracted end of the spectrum. But he did not stop here. Pushing his thermometers into the dark space beyond the red he found that, though the light had disappeared, the radiant heat falling on the instruments was more intense than that at any visible part of the spectrum. In fact, Sir William Herschel showed, and his results have been verified by various philosophers since his time, that besides its luminous rays, the sun pours forth a multitude of other rays more powerfully calorific than the luminous ones, but entirely unsuited to the purposes of vision.

At the less refrangible end of the solar spectrum, then, the range of the sun's radiation is not limited by that of the eye. The same statement applies to the more refrangible end. Ritter discovered the extension of the spectrum into the invisible region beyond the violet; and, in recent times, this ultraviolet emission has had peculiar interest conferred upon it by the admirable researches of Professor Stokes. The complete spectrum of the sun consists, therefore, of three distinct parts:-1° Of ultra-red

rays of high heating power, but unsuited to the purposes of vision; 2° Of luminous rays which display the following succession of colours, red, orange, yellow, green, blue, indigo, violet; 3° Of ultra-violet rays which, like the ultra-red ones, are incompetent to excite vision, but unlike them possess a very feeble heating power. In consequence, however, of their chemical energy these ultra-violet rays are of the utmost importance to the organic world.

2. Origin and Character of Radiation. The Ether.

When we see a platinum wire raised gradually to a white heat, and emitting in succession all the colours of the spectrum, we are simply conscious of a series of changes in the condition of our eyes. We do not see the actions in which these successive colours originate, but the mind irresistibly infers that the appearance of the colours corresponds to certain contemporaneous changes in the wire. What is the

nature of these changes? In virtue of what condition does the wire radiate at all? We must now look from the wire as a whole to its constituent atoms. Could we see those atoms, even before the

[blocks in formation]

electric current has begun to act upon them, we should find them in a state of vibration. In this vibration indeed consists such warmth as the wire then possesses. Locke enunciated this idea with great precision, and it seems placed beyond the pale of doubt by the excellent quantitative researches of Mr Joule. "Heat," says Locke, "is a very brisk agitation of the insensible parts of the object, which produce in us that sensation from which we denominate the object hot: so what in our sensation is heat in the object is nothing but motion." When the electric current, still feeble, begins to pass through the wire, its first act is to intensify the vibrations already existing, by causing the atoms to swing through wider ranges. Technically speaking, the amplitudes of the oscillations are increased. The current does this, however, without altering the period of the old vibrations, or the time in which they were accomplished. But besides intensifying the old vibrations the current generates new and more rapid ones, and when a certain definite rapidity has been attained the wire begins to glow. The colour first exhibited is red, which corresponds to the lowest rate of vibration of which the eye is able to take cognizance. By augmenting the strength of the electric current more rapid vibrations are introduced, and orange rays appear. A quicker rate

« PreviousContinue »