Page images
PDF
EPUB

coeditor of "Solid State Physics" series, Academic Press, Inc., and author of the chapter on "Fundamental Aspects of Diffusion in Solids" in "Phase Transformations in Solids" (John Wiley & Sons, 1951). He is also a member of the editorial board of "Il Nuovo Cimento."

He was Director of the training program in atomic energy, Oak Ridge National Laboratory, 1946-47; consultant to the Secretary of War, 1945; science adviser to the North Atlantic Treaty Organization, 1959-60; and civilian member of the National Defense Research Committee, 1941-45. He is now a member of the Defense Science Board, Department of Defense; member of the Advisory Board to the Industrial College of the Armed Forces; member of the Naval Research Advisory Committee (Chairman, 1960–62), Office of Naval Research; consultant to the Air Force Office of Scientific Research; and member of the Policy Advisory Board, Argonne National Laboratory, and of the Statutory Visiting Committee for the National Bureau of Standards.

Dr. Seitz is vice president of the International Union of Pure & Applied Physics, member of the governing board of the American Institute of Physics (chairman, 1954-59), member of the Council of the American Physical Society (president, 1960-61), member of the board of the Midwestern Universities Research Association, and member of numerous other scientific and honorary societies.

Dr. SEITZ. Mr. Chairman, thank you for the opportunity. Shall I begin?

The CHAIRMAN. Go right ahead.

Dr. SEITZ. Good.

STATEMENT OF DR. FREDERICK SEITZ, PRESIDENT, NATIONAL ACADEMY OF SCIENCES, WASHINGTON, D.C.

Dr. SEITZ. The very great mobility of humanity throughout history shows a curious dualism in the sense that man is distributed essentially everywhere that is even remotely inhabitable in spite of the fact that the average person basically prefers to remain fixed. Most human beings spend all of their lives within a few miles of their birthplace, usually marrying someone from just around the corner. Yet in spite of this, we have managed to reach every available spot or crevice of the world where muscle or machine can attain. Along with this, individuals from one region have managed to wander far afield in spite of great difficulties. The reasons we have moved from one region to another, either in small or large groups, are quite varied. It is interesting to list a few of these reasons.

REASONS FOR HUMAN MOBILITY

Perhaps the most important has been the drive for self-preservation. This, for example, brought the Eskimos to the Arctic.

Second is the desire for trade, such as that which led the Europeans to search for new routes to India either around Africa or across the Atlantic.

Still further is the desire for adventure or booty, which brought Cortez to Mexico.

Then there are reasons of military strategy such as caused Hannibal and Napoleon to send large armies over the Alps.

Prestige may play a very important role as in the case of the national teams which have climbed Mount Everest, the recent ones being as you know American teams.

Then there may be religious motives such as those which led Livingstone to the heart of Africa in order to bring Christianity there.

Finally, is the desire for knowledge, one of the deepest driving forces among an exceptional group of human beings. This search for knowledge drove men to explore many remote places on our globe.

It is clear that most unusual human journeys have been spurred by a combination of these motives and not by one alone.

For example, the majority of the expeditions to the Antarctic in the last 50 years and the trips of the atomic submarines between the Atlantic and the Pacific under the polar ice sheet have been motivated by a mixture of the drives I have mentioned above.

When all is said and done, the great explorations of the extraterrestrial space about us in which our country is deeply engaged at present is a continuation of the pattern of search and migration that has motivated man throughout his history. The remarkable thing which has occurred in our generation is that technology has reached a point where our machines can reach sufficient speed overcome the earth's gravitational field. This has opened to us the possibility of exploring the outer atmosphere and the interplanetary regions.

to

Fortunately, the distances and speeds involved are such that explorations can be made in a time short compared to one human lifetime as long as we keep to the nearby planets. These journeys can be understood in the same general framework of time as that involved in the great terrestrial explorations of the past, such as those in the Antarctic.

The motives which drive us into the exploration of space are on the whole complex, involving practically all of the basic factors I have listed above. The only one which may be absent is the desire for wealth or booty, although in this connection I might remind you that Representative Gross of Iowa said last year during budgetary hearings on the NASA project that he hoped we would find that the moon would be made out of gold when we got there. As I recall, he added that he thought we might need the money by that time..

SPACE EXPLORATION IMPORTANT TO MEANING OF HUMAN EXISTENCE

Taken as a whole, I think that we must look upon this period of exploration of space as an important part of the human journey applied to whatever meaning our own human existence has. The only major debatable issue seems to be the rate at which the exploration proceeds. Here our President has recommended that nothing less than leadership will suffice. This judgment is based on many inputs involving political factors, primarily international ones, the prestige with which our technology is regarded everywhere, the public interest, and of course, scientific factors..

The investment which we make in any year or decade must be decided by making a complex balance between all of the factors involved. Even though the minimal investment needed to make the program go may seem large compared to most other scientific projects, it represents only of the order of 1 percent of our national income. Moreover, the money is spent primarily within our own borders and hence is well within reach of our national capacity.

DESIRE TO MAXIMIZE BASIC SCIENTIFIC INFORMATION

The part of the overall program which interests the members of the National Academy of Sciences most is, of course, that concerned

with basic science. We hope that whatever else is achieved as a result of the exploration of space with manned or unmanned vehicles and probes, the whole program can be carried out in a way which will maximize the amount of basic scientific information we gain.

SPACE SCIENCE BOARD IS PRINCIPAL OUTSIDE ADVISER TO NASA

In connection with this I should point out that the Space Science Board of the National Academy of Sciences-National Research Council which, historically speaking, played a key role in the organization of NASA, is now the principal outside advisory body for NASA. It is composed of scientists and engineers from essentially every discipline represented within the National Academy of Sciences. I should add that Dr. Harry Hess, the chairman of the Space Science Board, will testify later on in these hearings, and will amplify the remarks I am making here.

Let me list the principal areas in which we can hope to gain knowledge of the type in which the scientist is normally and justly concerned. I will begin with the applied arts and then turn to basic

science.

GAIN OF KNOWLEDGE IN TECHNOLOGICAL AREAS

In the area of technology, there are, first of all, matters relating to the traditional fields of engineering. If we take the view that engineering centers about the practical aspects of power conversion, communications and control, the properties of materials and structures, and above all that the highest art of genius in the field of engineering is associated with tying these together in specific applications through invention and design, it is clear that space technology offers an almost unlimited challenge to the creative engineer.

Along the same lines, if man is to spend an extended period in space, as seems inevitable, it will be necessary to develop somewhat specialized knowledge concerning his responses to his environment.

We all know the specialized problems which the astronauts face because of the fact that they are confined in limited space under conditions of weightlessness and in which their atmosphere and temperature must be controlled artificially. All of this lore will become part of traditional disciplines of the medical and behavioral scientist or engineer in the years to come.

Finally, we must recognize that the field of space exploration will have associated with it problems of sociological, legal, and economic science. These will also become part of the traditional disciplines of our highly organized society.

GAIN OF SCIENTIFIC KNOWLEDGE

Turning to the pure sciences, there are, first of all, matters concerning the upper atmosphere of the Earth, which is influenced very directly by the emanations from the Sun. Connected with this is the thin and highly ionized solar atmosphere through which the Earth travels. It is clear that we will not have a thorough picture of our atmosphere as a whole and the factors which determine our weather and climate until we understand events 100 or more miles above the surface of the Earth.

Then there are matters relating to the inorganic composition of satellites such as our Moon and the planets, that is, what might be called the local geology of the planets and their satellites. The Earth scientist wonders to what extent the features of our own planet are duplicated elsewhere. He also notices that the Moon bears in a clear and evident way the imprint of billions of years of direct exposure to space so that it is a a kind of enormous fossil whose study can teach us very much about the ancient past of the solar system.

The information gathered by radio astronomy and by the recent Mariner probe of Venus has given us a much clearer picture of the atmosphere and topography of Venus. We note that there are very great differences between Venus and the Earth, such as those relating to surface temperature, atmosphere, length of day, and magnetic field. From the scientific standpoint, it would be very important to get more refined information.

The third great area of scientific study associated with the exploration of space centers about the establishment of astronomical laboratories well outside of the Earth's atmosphere so that the observer is free both of atmospheric turbulence and of the absorption of the atmosphere which blacks out everything except a small region in the visible spectrum through which we see the stars, and a few octaves in the radio range, normally termed the radioastronomy window.

One can expect a large extension of our astronomical knowledge, ranging from the study of the Sun's surface to the distant nebulae, once we are able to set up observatories outside the atmosphere.

Fourth are studies of the basic laws of physics, particularly those covered under the heading of relativity theory. Exciting new investigations can be made when one deals with the variation of velocity and distance in gravitational fields made possible by terrestrial or solar satellites with highly eccentric orbits.

Finally, there are the biological sciences, which to my mind are the most intriguing of the fields of science involved in space exploration from the human viewpoint. If we find no significant signs of life anywhere else in the solar system, as I would guess offhand to be the case, we can be fairly certain that life as we know it originated on the earth and evolved, as is traditionally believed, from complex molecules suspended in the ancient oceans of the earth a billion or more years ago.

On the other hand, if we do discover signs of life elsewhere, a whole host of stimulating questions arises.

There is, for example, the question of whether the form of life elsewhere is the same as our own in the sense that it employs the same chemical building blocks and structure.

If so, can we determine whether life originated elsewhere in the solar system or universe and was transported here? Or did it perhaps start on our earth and become dispersed at an early stage in its development?

If, on the other hand, it turns out that life elsewhere in the solar system is inherently different from that on earth, that is, uses different chemical units as building blocks, what will we be able to say about the ease with which life can be formed in other environments? Speaking purely personally, I can think of no serious problems related to our own existence, except possibly those concerning the origin and evolution of our own species, that are even as remotely exciting as these.

All of this makes it reasonably clear that man's adventure in space will stimulate many branches of scientific work in a quite natural and automatic way, provided the scientists are given their rightful place in the whole space program.

In this connection, I might add that I hope that as our national space program becomes well established and its policies of operation are formulated, it will find ways of bringing the typical university scientist, who has interests close to the space mission, into participation since so much of our scientific strength resides in the universities.

STRONG UNIVERSITY PARTICIPATION IN RESEARCH ASSURES HEALTH OF PROGRAM

The history of science in the United States demonstrates quite clearly that strong university participation in a field of research, whatever it may be, helps to assure the health of the program. There are many reasons for this.

First, a certain fraction of the best minds find the type of freedom and flexibility peculiar to the university best suited for their work. In addition, the presence of many inquiring young minds in the formative period, particularly the research students, adds a particular freshness and vitality to research. I do not mean to say that excellent work is not done elsewhere, such as in industrial, nonprofit, or in-house laboratories. What is important is that any program which does not take maximum advantage of the capability within universities will not advance in the most effective way possible.

INTERACTION BETWEEN RESEARCH AGENCIES AND UNIVERSITIES

This brings me to a very major problem which is in the minds of all scientists at the present time. The problem centers about the question of the degree of interaction between the agencies sponsoring our research program, principally NASA, and the universities.

As mentioned above, such interaction is very desirable if our national space program is to accomplish its best mission in the period of 10 or 20 years which lies ahead. This problem is a somewhat complex one and hard to subject to any exact analysis. Perhaps one would like to ignore it and yet it cannot be ignored because of the demands which the space program will inevitably make upon the universities for the most highly trained manpower as well as for subsidiary talent and knowledge.

[ocr errors]

I think it is safe to say that in the coming generation a significant fraction of our best-trained students in science and technology, at least 10 percent and possibly more, will end up in some facet of the space program if we continue, as I personally believe is appropriate, to make it the object of urgent national interest and support.

For their own good, the space agencies must make certain that the universities are viable in fields of interest to them and that the students they turn out have been given the maximum opportunity to develop their capabilities at least in the areas of academic work essential for the space program.

« PreviousContinue »