Page images
PDF
EPUB
[blocks in formation]

issued by the different railways; and assuming half of them to be annual, one fourth half-yearly, and the remainder quarterly tickets, and that their holders made only five journeys each way weekly, this would give an additional number of 39,405,600 journeys, or a total of 313,699,268 passengers carried in Great Britain in one year.

It is difficult to grasp the idea of the enormous number of persons represented by these figures. The mind is merely bewildered by them, and can form no adequate notion of their magnitude. To reckon them singly would occupy twenty years, counting at the rate of one a second for twelve hours every day. Or take another illustration. Supposing every man, woman, and child in Great Britain to make ten journeys by rail yearly, the number would fall short of the passengers carried in 1866.

Mr. Porter, in his “ Progress of the Nation,” estimated that thirty millions of passengers, or about eighty-two thousand a day, traveled by coaches in Great Britain in 1834, an average distance of twelve miles each, at an average cost of 58. a passenger, or at the rate of 5d. a mile; whereas above 313 millions are now carried by railway an average distance of 84 miles each, at an average cost of 18. 11d. per passenger, or about three halfpence per mile, in considerably less than half the time.

But, besides the above number of passengers, one hụndred and twenty-four million tons of minerals and merchandise were carried by railway in the United Kingdon in 1866, and fifteen millions of cattle, besides mails, parcels, and other traffic. The distance run by passenger and goods trains in the year was 142,807,853 miles, to accomplish which it is estimated that four miles of railway on an average must be covered by running trains during every second all the year round.

To perform this service, there were, in 1866, 8125 locomotives at work in the United Kingdom, consuming about three million tons of coal and coke, and flashing into the air every minute some thirty tons of water in the form of steam in a high state

PREFACE.

of elasticity. There were also 19,228 passenger-carriages, 7276 vans and breaks attached to passenger-trains, and 242,947 trucks, wagons, and other vehicles appropriated to merchandise. Buckled together, buffer to buffer, the locomotives and tenders would extend for a length of about 54 miles, or more than the distance from London to Brighton; while the carrying vehicles, joined together, would form two trains occupying a double line of railway extending from London to beyond Inverness.

A notable feature in the growth of railway traffic of late years has been the increase in the number of third-class passengers, compared with first and second class. Sixteen years since, the third-class passengers constituted only about one third ; ten years later they were about one half; whereas now they form nearly two thirds of the whole number carried. Thus George Stephenson's prediction “ that the time would come when it would be cheaper for a working man to make a journey by railway than to walk on foot” is already realized.

The degree of safety with which this great traffic has been conducted is not the least remarkable of its features. Of course, so long as railways are worked by men, they will be liable to the imperfections belonging to all things human. Though their machinery may be perfect, and their organization as complete as skill and forethought can make it, workmen will at times be forgetful and listless, and a moment's carelessness may lead to the most disastrous results. Yet, taking all circumstances into account, the wonder is that traveling by railway at high speeds should have been rendered comparatively so safe.

To be struck by lightning is one of the rarest of all causes of death, yet more persons were killed by lightning in Great Britain, in 1866, than were killed on railways from causes beyond their own control; the number in the former case having been nineteen, and in the latter fifteen, or one in every twenty millions of passengers carried. Most persons would consider the probability of their dying by hanging to be extremely remote; yet, accord

[blocks in formation]

ing to the Registrar General's returns for 1867, it is thirty times greater than that of being killed by railway accident. Taking the number of persons who traveled in Great Britain in 1866 at 313,699,268, of whom fifteen were accidentally killed, it would appear that, even supposing a person to have a permanent existence, and to make a journey by railway daily, the probability of his being killed in an accident would occur on an average once in above 50,000 years.

The remarkable safety with which railway traffic is on the whole conducted, is due to constant watchfulness and highly-applied skill. The men who work the railways are for the most part the picked men of the country, and every railway station may be regarded as a practical school of industry, attention, and punctuality. Where railways fail in these respects, it will usually be found that it is because the men are personally defective, or because better men are not to be had. It must also be added that the onerous and responsible duties which railway workmen are called upon to perform require a degree of consideration on the part of the public which is not very often extended to them.

Few are aware of the complicated means and agencies that are in constant operation on railways day and night to insure the safety of the passengers to their journeys' end. The road is under a system of continuous inspection, under gangs of menabout twelve to every five miles, under a foreman or “ganger” whose duty it is to see that the rails and chairs are sound, all their fastenings complete, and the line clear of obstructions.

Then, at all the junctions, sidings, and crossings, pointsmen are stationed, with definite instructions as to the duties to be performed by them. At these places signals are provided, worked from the station platforms, or from special signal-boxes, for the purpose of protecting the stopping or passing trains. When the first railways were opened the signals were of a very simple kind. The station-men gave them with their arms stretched out in different positions; then flags of different colors were used; next

[blocks in formation]

fixed signals, with arms or discs, or of rectangular or triangular shape. These were followed by a complete system of semaphore signals, near and distant, protecting all junctions, sidings, and crossings.

When government inspectors were first appointed by the Board of Trade to examine and report upon the working of railways, they were alarmed by the number of trains following each other at some stations in what then seemed to be a very rapid succession. A passage from a Report written in 1840 by Sir Frederick Smith, as to the traffic at “ Taylor's Junction," on the York and North Midland Railway, contrasts curiously with the railway life and activity of the present day: “Here," wrote the alarmed inspector," the passenger trains from York, as well as Leeds and Selby, meet four times a day. No less than 23

passenger-trains stop at or pass this station in the 24 hours—an amount of traffic requiring not only the most perfect arrangements on the part of the management, but the utmost vigilance and energy in the servants of the Company employed at this place.” Contrast this with the state of things now. On the Metropolitan Line, 667 trains pass a given point in one direction or the other during the eighteen hours of the working day, or an average of 36 trains an hour. At the Cannon-street Station of the Southeastern Railway, 527 trains pass in and out daily, many of them crossing each others' tracks under the protection of the station signals. Forty-five trains run in and out between 9 and 10 A.M., and an equal number between 4 and 5 P.M. Again, at the Clapham Junction, near London, about 700 trains pass or stop daily; and though to the casual observer the succession of trains coming and going, running and stopping, coupling and shunting, appears a scene of inextricable confusion and danger, the whole is clearly intelligible to the signal-men in their boxes, who work the trains in and out with extraordinary precision and regularity.

The inside of a signal-box reminds one of a piano-forte on a large scale, the lever-handles corresponding with the keys of the

[blocks in formation]

instrument; and, to an uninstructed person, to work the one would be as difficult as to play a tune on the other. The signalbox outside Cannon-street Station contains 67 lever-handles, by means of which the signal-men are enabled at the same moment to communicate with the drivers of all the engines on the line within an area of 800 yards. They direct by signs, which are quite as intelligible as words, the drivers of the trains starting from inside the station, as well as those of the trains arriving from outside. By pulling a lever-handle, a distant signal, perhaps out of sight, is set some hundred yards off, which the approaching driver-reading it quickly as he comes along—at once interprets, and stops or advances, as the signal may direct.

The precision and accuracy of the signal-machinery employed at important stations and junctions have of late years been much improved by an ingenious contrivance, by means of which the setting of the signal prepares the road for the coming train. When the signal is set at“ Danger," the points are at the same time worked, and the road is “locked” against it; and when at “Safety," the road is open—the signal and the points exactly corresponding

The Electric Telegraph has also been found a valuable auxiliary in insuring the safe working of large railway traffics. Though the locomotive may run at sixty miles an hour, electricity, when at its fastest, travels at the rate of 288,000 miles a second, and is therefore always able to herald the coming train. The electric telegraph may, indeed, be regarded as the nervous system of the railway. By its means the whole line is kept throbbing with intelligence. The method of working electric signals varies on different lines; but the usual practice is to divide a line into so many lengths, each protected by its signal-stations, the fundamental law of telegraph working being that two engines are not to be allowed to run on the same line between two signal-stations at the same time. When a train passes one of such stations, it is immediately signaled on-usually by elec

« PreviousContinue »