Page images
PDF
EPUB

follows, than would be possible to Le Verrier, when all he had to base his calculations upon was the influence of the planet reflected, so to speak, from Uranus. It may be noted that the true elements of the planet, when revealed by direct observation, showed that there was a considerable discrepancy between the track of the planet which Le Verrier had announced, and that which the planet was actually found to pursue.

The name of the newly-discovered body had next to be considered. As the older members of the system were already known by the same names as great heathen divinities, it was obvious that some similar source should be invoked for a suggestion as to a name for the most recent planet. The fact that this body was so remote in the depths of space, not unnaturally suggested the name "Neptune." Such is accordingly the accepted designation of that mighty globe which revolves in the track that at present seems to trace out the frontiers of our system.

Le Verrier attained so much fame by this discovery, that when, in 1854, Arago's place had to be filled at the head of the great Paris Observatory, it was universally felt that the discoverer of Neptune was the suitable man to assume the office which corresponds in France to that of the Astronomer Royal in England. It was true that the work of the astronomical mathematician had hitherto been of an abstract character. His discoveries had been made at his desk and not in the observatory, and he had no practical acquaintance with the use of astronomical instruments. However, he threw himself into the technical duties of the observatory with vigour and determination. He endeavoured to inspire the officers of the establishment with enthusiasm for that systematic work which is so

necessary for the accomplishment of useful astronomical research. It must, however, be admitted that Le Verrier was not gifted with those natural qualities which would make him adapted for the successful administration of such an establishment. Unfortunately disputes arose between the Director and his staff. At last the difficulties of the situation became so great that the only possible solution was to supersede Le Verrier, and he was accordingly obliged to retire. He was succeeded in his high office by another eminent mathematician, M. Delaunay, only less distinguished than Le Verrier himself.

Relieved of his official duties, Le Verrier returned to the mathematics he loved. In his non-official capacity he continued to work with the greatest ardour at his researches on the movements of the planets. After the death of M. Delaunay, who was accidentally drowned in 1873, Le Verrier was restored to the directorship of the observatory, and he continued to hold the office until his death.

The nature of the researches to which the life of Le Verrier was subsequently devoted are not such as admit of description in a general sketch like this, where the language, and still less the symbols, of mathematics could not be suitably introduced. It may, however, be said in general that he was particularly engaged with the study of the effects produced on the movements of the planets by their mutual attractions. The importance of this work to astronomy consists, to a considerable extent, in the fact that by such calculations we are enabled to prepare tables by which the places of the different heavenly bodies can be predicted for our almanacs. To this task Le Verrier devoted himself, and the amount of work he has accom

plished would perhaps have been deemed impossible had it not been actually done.

The superb success which had attended Le Verrier's efforts to explain the cause of the perturbations of Uranus, naturally led this wonderful computer to look for a similar explanation of certain other irregularities in planetary movements. To a large extent he succeeded in showing how the movements of each of the great planets could be satisfactorily accounted for by the influence of the attractions of the other bodies of the same class. One circumstance in connection with these investigations is sufficiently noteworthy to require a few words here. Just as at the opening of his career, Le Verrier had discovered that Uranus, the outermost planet of the then known system, exhibited the influence of an unknown external body, so now it appeared to him that Mercury, the innermost body of our system, was also subjected to some disturbances, which could not be satisfactorily accounted for as consequences of any known agents of attraction. The ellipse in which Mercury revolved was animated by a slow movement, which caused it to revolve in its plane. It appeared to Le Verrier that this displacement was incapable of explanation by the action of any of the known bodies of our system. He was, therefore, induced to try whether he could not determine from the disturbances of Mercury the existence of some other planet, at present unknown, which revolved inside the orbit of the known planet. Theory seemed to indicate that the observed alteration in the track of the planet could be thus accounted for. He naturally desired to obtain telescopic confirmation which might verify the existence of such a body in the same way as Dr. Galle verified the

existence of Neptune. If there were, indeed, an intramercurial planet, then it must occasionally cross between the earth and the sun, and might now and then be expected to be witnessed in the actual act of transit. So confident did Le Verrier feel in the existence of such a body that an observation of a dark object in transit, by Lescarbault on 26th March, 1859, was believed by the mathematician to be the object which his theory indicated. Le Verrier also thought it likely that another transit of the same object would be seen in March, 1877. Nothing of the kind was, however, witnessed, notwithstanding that an assiduous watch was kept, and the explanation of the change in Mercury's orbit must, therefore, be regarded as still to be sought for.

Le Verrier naturally received every honour that could be bestowed upon a man of science. The latter part of his life was passed during the most troubled period of modern French history. He was He was a supporter of the Imperial Dynasty, and during the Commune he experienced much anxiety; indeed, at one time grave fears were entertained for his personal safety.

Early in 1877 his health, which had been gradually failing for some years, began to give way. He appeared to rally somewhat in the summer, but in September he sank rapidly, and died on Sunday, the 23rd of that month.

His remains were borne to the cemetery on Mont Parnasse in a public funeral. Among his pall-bearers were leading men of science, from other countries as well as France, and the memorial discourses pronounced at the grave expressed their admiration of his talents and of the greatness of the services he had rendered to science.

A A

ADAMS.

THE illustrious mathematician who, among Englishmen, at all events, was second only to Newton by his discoveries in theoretical astronomy, was born on June the 5th, 1819, at the farmhouse of Lidcot, seven miles from Launceston, in Cornwall. His early education was imparted under the guidance of the Rev. John Couch Grylls, a first cousin of his mother. He appears to have received an education of the ordinary school type in classics and mathematics, but his leisure hours were largely devoted to studying what astronomical books he could find in the library of the Mechanics' Institute at Devonport. He was twenty years old when he entered St. John's College, Cambridge. His career in the University was one of almost unparalleled distinction, and it is recorded that his answering at the Wranglership examination, where he came out at the head of the list in 1843, was so high that he received more than double the marks awarded to the Second Wrangler.

Among the papers found after his death was the fol lowing memorandum, dated July the 3rd, 1841: "Formed a design at the beginning of this week of investigating, as soon as possible after taking my degree, the irregu

« PreviousContinue »