Page images
PDF
EPUB

employing microbial secretions obtained from cases of intestinal obstruction. He succeeded in producing serious symptoms, such as vomiting and curvature of the neck and back, in fact, precisely the sequence of events familiar in cases of obstruction of the bowels or other retentions of fæcal matter.

Some of the products of the intestinal flora are undoubtedly toxic, such as the benzol derivatives (phenol, etc.) ammonium and other salts. Many of these toxins have been insufficiently studied, but it is well known that certain of them can be absorbed by the wall of the gut and act as poisons. A well known case is the toxin of botulism which was isolated and studied by M. van Ermenghem.1 The poison, the product of a microbe which causes serious intestinal disturbance, is so fatal that a single drop given to a rabbit produces death after symptoms similar to those observed in cases of human beings poisoned by stale food. Butyric acid and the products of albuminous putrefaction are amongst the most pernicious of the microbial poisons produced in the large intestine. It is familiar that digestive disturbance is frequently associated with discharges of sulphuretted hydrogen and putrid excreta, and there is no doubt but that the microbes of putrefaction are the cause of these symptoms.

It has been assumed for long that the retention of fæcal matter tends to putrefactive changes in the intestines, and that the evil consequences of constipation are due to this. Recently, however, bacteriologists have criticised this accepted view, on account of the small number of microbes found in the excreta of constipated persons. Strasburger was the first to establish the fact, and his associate, Schmidt,

1 Kolle u. Wassermann, Handb. d. pathogenen Mikro-organismen, vol. ii, 1903, p. 678.

showed that putrefaction did not follow when readily putrescible substances were infected with material taken from cases of constipation. However, notwithstanding the exactness of these facts, I cannot accept the inference which has been drawn from them. The excreta discharged naturally in cases of constipation do not give a correct. indication of the conditions inside the gut; whilst such matter contains few microbes, the substance removed after injection by an enema is extremely rich in bacteria. Moreover, analysis of the urine, in cases of constipation, shows an excess of the sulpho-conjugate ethers which are known to be products of intestinal putrefaction.

Not only is there auto-intoxication from the microbial poisons absorbed in cases of constipation, but microbes themselves may pass through the walls of the intestine and enter the blood. In the maladies that are the result of constipation some of the symptoms recall those of direct infection, and it is highly probable that, if special investigations were made, microbes of intestinal origin would be found in the blood of the sick children and the pregnant or parturient women whose symptoms I have described above.

The question as to the passage of microbes through the intestinal walls is one of the most controversial of bacteriological problems, and there is little agreement in the numerous publications regarding it. None the less, it is far from impossible to get a general idea of what goes on in an intestinal tract richly charged with microbes.

Although the intestinal wall in an intact state offers a substantial obstacle to the passage of bacteria, it is incontestable that some of these pass through it into the organs and the blood. Numerous experiments performed on different kinds of animals (horses, dogs, rabbits, etc.) show

that some of the microbes taken with food traverse the wall of the alimentary canal and come to occupy the adjacent. lymphatic glands, the lungs, the spleen and the liver, whilst they are occasionally found in the blood and lymph. Discussion has taken place as to whether the passage takes place when the wall of the gut is absolutely intact or only when it is injured to however small an extent. It would be extremely difficult to settle the question definitely, but it is easy to see that it has little practical bearing. It is known that the wall of the gut is damaged extremely easily, so that the bluntest sound can hardly be passed into the stomach without making a wound through which microbes can pass into the tissues and blood. ordinary course of life, the delicate wall of the gut must often undergo slight wounding, and the frequent presence of microbes in the mesenteric ganglia of healthy animals shows clearly what takes place.1

In the

It is indubitable, therefore, that the intestinal microbes or their poisons may reach the system generally and bring harm to it. I infer from the facts that the more a digestive tract is charged with microbes, the more it is a source of harm capable of shortening life.

As the large intestine not only is the part of the digestive. tube most richly charged with microbes, but is relatively more capacious in mammals than in any other vertebrates, it is a just inference that the duration of life of mammals has been notably shortened as the result of chronic poisoning from an abundant intestinal flora.

1 Ficker, in the Archiv. für Hygiene, vol. lii, p. 179, has recently published the results of an investigation into this.

[ocr errors][merged small][merged small]

Relations between longevity and the intestinal flora-Rumi-
nants-The Horse-Intestinal flora of birds-Intestinal
flora of cursorial birds--Duration of life in cursorial birds
-Flying mammals-Intestinal flora and longevity of bats-
Some exceptions to the rule-Resistance of the lower verte-
brates to certain intestinal microbes

IN the actual state of our knowledge it is impossible to make a final examination of my hypothesis, as there are many factors about which we are incompletely informed. Nevertheless, it is possible to confront the hypothesis with a large number of accurately established facts.

Although the life of most mammals is relatively short, there are to be found in the group some which live relatively long, as well as others whose life is short. The elephant is an example of the long-lived mammals, whilst ruminants are short-lived forms. In the last chapter, I stated that sheep and cattle became senile at an early age, and did not live long. They are striking exceptions to the rule according to which the duration of life is in direct relation with the size and length of the period of growth. The cow, which is much larger than a woman, and the time of gestation of which is about the same, or a little longer, acquires its teeth at four years old, and becomes senile at an early age; it is quite old at between sixteen and seventeen,

an age when a woman is hardly adult; at the age of thirty, practically the extreme limit for bovine animals, a woman is in full vigour.

The precocious old age of ruminants, the constitution of which is well understood, and which are carefully tended, coincides with an extraordinary richness of the intestinal flora. Food remains for a long time in the complicated stomach of these animals, and afterwards the digested masses remain still longer in the large intestine. According to Stohmann and Weiske,1 in the case of sheep it is a week until the remains of a particular meal have finally left the body of the animal. The excreta of sheep, normally solid, do not betray any special putrefaction in the intestine, but if the body is opened there is abundant evidence of the process. The intestinal contents are richly charged with microbes and give off a strong odour of putrefaction. It is not surprising that under these conditions, the life of sheep should be short.

Another large herbivorous animal, the horse, also dies young, after a premature old age. Although it does not ruminate and possesses a simple stomach, the process of digestion is slow, and enormous masses of nutritive material accumulate in the huge large intestine. Ellenberger and Hofmeister2 have shown that food remains in the alimentary canal for nearly four days. It remains in the stomach and the small intestine only 24 hours, but about three times as long in the large intestine.

This is remarkcase of birds, in

ably different from what happens in the which there is no stagnation during the passage of food through the digestive canal.

1 Quoted by Fredericq et Nuel, Eléments de physiologie humaine, 4th edition, 1899, p. 256.

2 Quoted by Frédericq et Nuel, op. cit.

« PreviousContinue »