Page images

of motion, and all accompanying the planet in Its journey around the sun. Here was a miniature Copernican system, hung up in the sky for all to see and examine for themselves.

Reception of the discoveries.—Galileo met with the most bitter opposition. Many refused to look through the telescope lest they might become victims of the philosopher's magic. Some prated of the wickedness of digging out valleys in the fair face of the moon. Others doggedly clung to the theory they had held from their youth up. As a specimen of the arguments adduced against the new system, the following by Sizzi is a fair instance. "There are seven windows in the head, through which the air is admitted to the body, to enlighten, to warm, and to nourish it,—two nostrils, two eyes, two ears, and one mouth. So in the heavens there are two favorable stars, Jupiter and Venus; two unpropitious, Mars and Saturn; two luminaries, the Sun and Moon; and Mercury alone, undecided and indifferent. From which, and from many other phenomena of Nature, such as the seven metals, etc., we gather that the number of planets-is necessarily seven. Moreover, the satellites are invisible to the naked eye, can exercise no influence over the earth, and would be useless, and therefore do not exist. Besides, the week is divided into seven days, which are named from the seven planets. Now, if we increase the number of planets, this whole system falls to the ground."

Newton.—As we have seen, the truth of the Copernican system was fully established by the discoveries of Galileo with his telescope. Philosophers gradually adopted this view, and the Ptolemaic theory became a relic of the past. In 1666, Newton, a young man of twenty-four years, was spending a season in the country, on account of the plague which prevailed at Cambridge, his place of residence. One day, while sitting in a garden, an apple chanced to fall to the ground near him. Reflecting upon the strange power that causes all bodies thus to descend to the earth, and remembering that this force continues, even when we ascend to the tops of high mountains, the thought occurred to his mind, "May not this same force extend to a great distance out in space? Does it not reach the moon?"

Laws of Motion.—To understand the philosophy of the reasoning that now occupied the mind of Newton, let us apply the laws of motion as we have learned them in Philosophy. When a body is once set in motion, it will continue to move forever in a straight line, unless another force is applied. As there is no friction in space, the planets do not lose any of their original velocity, but move now with the same speed which they received in the beginning from the Divine hand. But this would make them all pass through straight, and not circular orbits. What causes the curve? Obviously another force. For example: I throw a stone into the air. It moves not in a straight line, but in a curve, because the earth constantly bends it downward.

Apptication.—Just so the moon is moving around the earth, not in a straight line, but in a curve. Can it not be that the earth bends it downward, just as it does the stone? Newton knew that a stone falls toward the earth sixteen feet the first second. He imagined, after a careful study of Kepler's laws, that the attraction of the earth diminishes according to the square of the distance. He knew (according to the measurement then received) that a body on the surface of the earth is four thousand miles from the centre. He applied this imaginary law. Suppose it is removed four thousand miles from the surface of the earth, or eight thousand miles from the centre. Then, as it is twice as far from the centre, its weight will be diminished 22, or 4 times. H it were placed 3, 4, 5,10 times further away, its weight Would then decrease 9, 16, 25, 100 times. If, then, the stone at the surface of the earth (four thousand miles from the centre) falls sixteen feet the first second, at eight thousand miles it would fall only four feet; at 240,000 miles, or the distance of the moon, it would fall only about one-twentieth of an inch (exactly .053). Now the question arose, "How far does the moon fall toward the earth, i. e., bend from a straight line, every second?" For seventeen years, with a patience rivalling Kepler's, this philosopher toiled over interminable columns of figures to find how much the moon's path around the earth curves each second. He reached the result at last. It was nearly, but not quite exact. Disappointed, lie laid aside his calculations. Kepeatedly he reviewed them, but could not find a mistake. At length, while in London, he learned of a new and more accurate measurement of the distance from the circumference to the centre of the earth. He hastened home, inserted this new value in his calculations, and soon found that the result would be correct. Overpowered by the7' thought of the grand truth just before him, his hand faltered, and he called upon a friend to complete the computation.

From the moon, Newton passed on to the other heavenly bodies, calculating and testing their orbits. At last he turned his attention to the sun, and, by reasoning equally conclusive, proved that the attraction of that great central orb compels all the planets to revolve about it in elliptical orbits, and holds them with an irresistible power in their appointed paths. At last he announced this grand Law of Gravitation:



We now in imagination pass into space, which stretches out in every direction without bounds or measures. We look up to the heavens and try to locate some object among the mazes of the stars. We are bewildered, and immediately feel the necessity of some system of measurement. Let us try to understand the one adopted by astronomers.

The Celestial Sphere.—The blue arch of the sky, as it appears to be spread above us, is termed the Celestial Sphere. There are two points to be noticed here. First, that so far distant is this imaginary arch from us, that if any two parallel lines from different parts of the earth are .drawn to this sphere, they will apparently intersect. Of course this cannot be the fact; but the distance is so immense, that we are unable to distinguish the little difference of four or even eight thousand miles, and the two liues will seem to unite: so we must consider this great earth as a mere speck or point at the centre of the Celestial Sphere. Second, that we must even neglect the entire diameter of the earth's orbit, so that if we should draw two parallel lines, one from each end of the earth's orbit, to the sphere, although these lines would be 183,000,000 miles apart, yet they would be extended so far that we could not separate them, and they would appear to pierce the sphere at the same point; which is to say, that at

« PreviousContinue »