Page images
PDF
EPUB

assess the potential safety consequences of a fire and advise control room personnel. Such competence by the brigade leader may be evidenced by possession of an operator's license or equivalent knowledge of plant safety-related systems.

The minimum equipment provided for the brigade shall consist of personal protective equipment such as turnout coats, boots, gloves, hard hats, emergency communications equipment, portable lights, portable ventilation equipment, and portable extinguishers. Self-contained breathing apparatus using full-face positive-pressure masks approved by NIOSH (National Institute for Occupational Safety and Health-approval formerly given by the U.S. Bureau of Mines) shall be provided for fire brigade, damage control, and control room personnel. At least 10 masks shall be available for fire brigade personnel. Control room personnel may be furnished breathing air by a manifold system piped from a storage reservoir if practical. Service or rated operating life shall be a minimum of one-half hour for the self-contained units.

At least a 1-hour supply of breathing air in extra bottles shall be located on the plant site for each unit of self-contained breathing appratus. In addition, an onsite 6-hour supply of reserve air shall be provided and arranged to permit quick and complete replenishment of exhausted air supply bottles as they are returned. If compressors are used as a source of breathing air, only units approved for breathing air shall be used and the compressors shall be operable assuming a loss of offsite power. Special care must be taken to locate the compressor in areas free of dust and contaminants.

I. Fire brigade training. The fire brigade training program shall ensure that the capability to fight potential fires is established and maintained. The program shall consist of an initial classroom instruction program followed by periodic classroom instruction, fire fighting practice, and fire drills:

1. Instruction

a. The initial classroom instruction shall include:

(1) Indoctrination of the plant fire fighting plan with specific identification of each individual's responsibilities.

(2) Identification of the type and location of fire hazards and associated types of fires that could occur in the plant.

(3) The toxic and corrosive characteristics of expected products of combustion.

(4) Identification of the location of fire fighting equipment for each fire area and familiarization with the layout of the plant, including access and egress routes to each

area.

(5) The proper use of available fire fighting equipment and the correct method of fighting each type of fire. The types of fires

covered should include fires in energized electrical equipment, fires in cables and cable trays, hydrogen fires, fires involving flammable and combustible liquids or hazardous process chemicals, fires resulting from construction or modifications (welding), and record file fires.

(6) The proper use of communication, lighting, ventilation, and emergency breathing equipment.

(7) The proper method for fighting fires inside buildings and confined spaces.

(8) The direction and coordination of the fire fighting activities (fire brigade leaders only).

(9) Detailed review of fire fighting strategies and procedures.

(10) Review of the latest plant modifications and corresponding changes in fire fighting plans.

NOTE: Items (9) and (10) may be deleted from the training of no more than two of the non-operations personnel who may be assigned to the fire brigade.

[blocks in formation]

per year, shall be unannounced to determine the fire fighting readiness of the plant fire brigade, brigade leader, and fire protection systems and equipment. Persons planning and authorizing an unannounced drill shall ensure that the responding shift fire brigade members are not aware that a drill is being planned until it is begun. Unannounced drills shall not be scheduled closer than four weeks.

At least one drill per year shall be performed on a "back shift" for each shift fire brigade.

c. The drills shall be preplanned to establish the training objectives of the drill and shall be critiqued to determine how well the training objectives have been met. Unannounced drills shall be planned and critiqued by members of the management staff responsible for plant safety and fire protection. Performance deficiencies of a fire brigade or of individual fire brigade members shall be remedied by scheduling additional training for the brigade or members. Unsatisfactory drill performance shall be followed by a repeat drill within 30 days.

d. At 3-year intervals, a randomly selected unannounced drill shall be critiqued by qualified individuals independent of the licensee's staff. A copy of the written report from such individuals shall be available for NRC review.

e. Drills shall as a minimum include the following:

(1) Assessment of fire alarm effectiveness, time required to notify and assemble fire brigade, and selection, placement and use of equipment, and fire fighting strategies.

(2) Assessment of each brigade member's knowledge of his or her role in the fire fighting strategy for the area assumed to contain the fire. Assessment of the brigade member's conformance with established plant fire fighting procedures and use of fire fighting equipment, including self-contained emergency breathing apparatus, communication equipment, and ventilation equipment, to the extent practicable.

(3) The simulated use of fire fighting equipment required to cope with the situation and type of fire selected for the drill. The area and type of fire chosen for the drill should differ from those used in the previous drill so that brigade members are trained in fighting fires in various plant areas. The situation selected should simulate the size and arrangement of a fire that could reasonably occur in the area selected, allowing for fire development due to the time required to respond, to obtain equipment, and organize for the fire, assuming loss of automatic suppression capability.

(4) Assessment of brigade leader's direction of the fire fighting effort as to thoroughness, accuracy, and effectiveness. 4. Records

Individual records of training provided to each fire brigade member, including drill critiques, shall be maintained for at least 3 years to ensure that each member receives training in all parts of the training program. These records of training shall be available for NRC review. Retraining or broadened training for fire fighting within buildings shall be scheduled for all those brigade members whose performance records show deficiencies.

J. Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided in all areas needed for operation of safe shutdown equipment and in access and egress routes thereto.

K. Administrative controls. Administrative controls shall be established to minimize fire hazards in areas containing structures, systems, and components important to safety. These controls shall establish procedures to:

1. Govern the handling and limitation of the use of ordinary combustible materials, combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion exchange resins, or other combustible supplies in safety-related

areas.

2. Prohibit the storage of combustibles in safety-related areas or establish designated storage areas with appropriate fire protection.

3. Govern the handling of and limit transient fire loads such as combustible and flammable liquids, wood and plastic products, or other combustible materials in buildings containing safety-related systems or equipment during all phases of operating. and especially during maintenance, modification, or refueling operations.

4. Designate the onsite staff member responsible for the inplant fire protection review of proposed work activities to identify potential transient fire hazards and specify required additional fire protection in the work activity procedure.

5. Govern the use of ignition sources by use of a flame permit system to control welding, flame cutting, brazing, or soldering operations. A separate permit shall be issued for each area where work is to be done. If work continues over more than one shift, the permit shall be valid for not more than 24 hours when the plant is operating or for the duration of a particular job during plant shutdown.

6. Control the removal from the area of all waste, debris, scrap, oil spills, or other combustibles resulting from the work activity immediately following completion of the activity, or at the end of each work shift, whichever comes first.

7. Maintain the periodic housekeeping inspections to ensure continued compliance with these administrative controls.

8. Control the use of specific combustibles in safety-related areas. All wood used in safety-related areas during maintenance, modification, or refueling operations (such as lay-down blocks or scaffolding) shall be treated with a flame retardant. Equipment or supplies (such as new fuel) shipped in untreated combustible packing containers may be unpacked in safety-related areas if required for valid operating reasons. However, all combustible materials shall be removed from the area immediately following the unpacking. Such transient combustible material, unless stored in approved containers, shall not be left unattended during lunch breaks, shift changes, or other similar periods. Loose combustible packing material such as wood or paper excelsior, or polyethylene sheeting shall be placed in metal containers with tight-fitting self-closing metal

covers.

9. Control actions to be taken by an individual discovering a fire, for example, notification of control room, attempt to extinguish fire, and actuation of local fire suppression systems.

10. Control actions to be taken by the control room operator to determine the need for brigade assistance upon report of a fire or receipt of alarm on control room annunciator panel, for example, announcing location of fire over PA system, sounding fire alarms, and notifying the shift supervisor and the fire brigade leader of the type, size, and location of the fire.

11. Control actions to be taken by the fire brigade after notification by the control room operator of a fire, for example, assembling in a designated location, receiving directions from the fire brigade leader, and discharging specific fire fighting responsibilities including selection and transportation of fire fighting equipment to fire location. selection of protective equipment, operating instructions for use of fire suppression systems, and use of preplanned strategies for fighting fires in specific areas.

12. Define the strategies for fighting fires in all safety-related areas and areas presenting a hazard to safety-related equipment. These strategies shall designate:

a. Fire hazards in each area covered by the specific prefire plans.

b. Fire extinguishants best suited for controlling the fires associated with the fire hazards in that area and the nearest location of these extinguishants.

c. Most favorable direction from which to attack a fire in each area in view of the ventilation direction, access hallways, stairs, and doors that are most likely to be free of fire, and the best station or elevation for fighting the fire. All access and egress routes that involve locked doors should be specifically identified in the procedure with the appropriate precautions and methods for access specified.

d. Plant systems that should be managed to reduce the damage potential during a local fire and the location of local and remote controls for such management (e.g., any hydraulic or electrical systems in the zone covered by the specific fire fighting procedure that could increase the hazards in the area because of overpressurization or electrical hazards).

e. Vital heat-sensitive system components that need to be kept cool while fighting a local fire. Particularly hazardous combustibles that need cooling should be designated. f. Organization of fire fighting brigades and the assignment of special duties according to job title so that all fire fighting functions are covered by any complete shift personnel complement. These duties include command control of the brigade, transporting fire suppression and support equipment to the fire scenes, applying the extinguishant to the fire, communication with the control room, and coordination with outside fire departments.

g. Potential radiological and toxic hazards in fire zones.

h. Ventilation system operation that ensures desired plant air distribution when the ventilation flow is modified for fire containment or smoke clearing operations.

i. Operations requiring control room and shift engineer coordination or authorization.

j. Instructions for plant operators and general plant personnel during fire.

L. Alternative and dedicated shutdown capability. 1. Alternative or dedicated shutdown capability provided for a specific fire area shall be able to (a) achieve and maintain subcritical reactivity conditions in the reactor; (b) maintain reactor coolant inventory; (c) achieve and maintain hot standby " conditions for a PWR (hot shutdown for a BWR); (d) achieve cold shutdown conditions within 72 hours; and (e) maintain cold shutdown conditions thereafter. During the postfire shutdown, the reactor coolant system process variables shall be maintained within those predicted for a loss of normal a.c. power, and the fission product boundary integrity shall not be affected; i.e., there shall be no fuel clad damage, rupture of any primary coolant boundary, or rupture of the containment boundary.

2. The performance goals for the shutdown functions shall be:

a. The reactivity control function shall be capable of achieving and maintaining cold shutdown reactivity conditions.

b. The reactor coolant makeup function shall be capable of maintaining the reactor coolant level above the top of the core for

As defined in the Standard Technical Specifications.

90-029 0-82--30

BWRS and be within the level indication in the pressurizer for PWRS.

c. The reactor heat removal function shall be capable of achieving and maintaining decay heat removal.

d. The process monitoring function shall be capable of providing direct readings of the process variables necessary to perform and control the above functions.

e. The supporting functions shall be capable of providing the process cooling, lubrication, etc., necessary to permit the operation of the equipment used for safe shutdown functions.

3. The shutdown capability for specific fire areas may be unique for each such area, or it may be one unique combination of systems for all such areas. In either case, the alternative shutdown capability shall be independent of the specific fire area(s) and shall accommodate postfire conditions where offsite power is available and where offsite power is not available for 72 hours. Procedures shall be in effect to implement this capability.

4. If the capability to achieve and maintain cold shutdown will not be available because of fire damage, the equipment and systems comprising the means to achieve and maintain the hot standby or hot shutdown condition shall be capable of maintaining such conditions until cold shutdown can be achieved. If such equipment and systems will not be capable of being powered by both onsite and offsite electric power systems because of fire damage, an independent onsite power system shall be provided. The number of operating shift personnel, exclusive of fire brigade members, required to operate such equipment and systems shall be on site at all times.

5. Equipment and systems comprising the means to achieve and maintain cold shutdown conditions shall not be damaged by fire; or the fire damage to such equipment and systems shall be limited so that the systems can be made operable and cold shutdown can be achieved within 72 hours. Materials for such repairs shall be readily available on site and procedures shall be in effect to implement such repairs. If such equipment and systems used prior to 72 hours after the fire will not be capable of being powered by both onsite and offsite electric power systems because of fire damage, an independent onsite power system shall be provided. Equipment and systems used after 72 hours may be powered by offsite power only.

6. Shutdown systems installed to ensure postfire shutdown capability need not be designed to meet seismic Category I criteria, single failure criteria, or other design basis accident criteria, except where required for other reasons, e.g., because of interface with or impact on existing safety systems, or be

cause of adverse valve actions due to fire damage.

7. The safe shutdown equipment and systems for each fire area shall be known to be isolated from associated non-safety circuits in the fire area so that hot shorts, open circuits, or shorts to ground in the associated circuits will not prevent operation of the safe shutdown equipment. The separation and barriers between trays and conduits containing associated circuits of one safe shutdown division and trays and conduits containing associated circuits or safe shutdown cables from the redundant division, or the isolation of these associated circuits from the safe shutdown equipment, shall be such that a postulated fire involving associated circuits will not prevent safe shutdown. 4

M. Fire barrier cable penetration seal qualification. Penetration seal designs shall utilize only noncombustible materials and shall be qualified by tests that are comparable to tests used to rate fire barriers. The acceptance criteria for the test shall include:

1. The cable fire barrier penetration seal has withstood the fire endurance test without passage of flame or ignition of cables on the unexposed side for a period of time equivalent to the fire resistance rating required of the barrier;

2. The temperature levels recorded for the unexposed side are analyzed and demonstrate that the maximum temperature is sufficiently below the cable insulation ignition temperature; and

3. The fire barrier penetration seal remains intact and does not

allow projection of water beyond the unexposed surface during the hose stream test.

N. Fire doors. Fire doors shall be self-closing or provided with closing mechanisms and shall be inspected semiannually to verify that automatic hold-open, release, and closing mechanisms and latches are operable.

One of the following measures shall be provided to ensure they will protect the opening as required in case of fire:

1. Fire doors shall be kept closed and electrically supervised at a continuously manned location;

+ An acceptable method of complying with this alternative would be to meet Regulatory Guide 1.75 position 4 related to associated circuits and IEEE Std 384-1974 (Section 4.5) where trays from redundant safety divisions are so protected that postulated fires affect trays from only one safety division.

2. Fire doors shall be locked closed and inspected weekly to verify that the doors are in the closed position;

3. Fire doors shall be provided with automatic hold-open and release mechanisms and inspected daily to verify that doorways are free of obstructions; or

4. Fire doors shall be kept closed and inspected daily to verify that they are in the closed position.

The fire brigade leader shall have ready access to keys for any locked fire doors.

Areas protected by automatic total flooding gas suppression systems shall have electrically supervised self-closing fire doors or shall satisfy option 1 above.

O. Oil collection system for reactor coolant pump. The reactor coolant pump shall be equipped with an oil collection system if the containment is not inerted during normal operation. The oil collection system shall be so designed, engineered, and installed that failure will not lead to fire during normal or design basis accident conditions and that there is reasonable assurance that the system will withstand the Safe Shutdown Earthquake. 5

Such collection systems shall be capable of collecting lube oil from all potential pressurized and unpressurized leakage sites in the reactor coolant pump lube oil systems. Leakage shall be collected and drained to a vented closed container that can hold the entire lube oil system inventory. A flame arrester is required in the vent if the flash point characteristics of the oil present the hazard of fire flashback. Leakage points to be protected shall include lift pump and piping, overflow lines, lube oil cooler, oil fill and drain lines and plugs, flanged connections on oil lines, and lube oil reservoirs where such features exist on the reactor coolant pumps. The drain line shall be large enough to accommodate the largest potential oil leak.

(Sec. 161b, Pub. L. 83-703, 68 Stat. 948; sec. 201, Pub. L. 93-438, 88 Stat. 1242 (42 U.S.C. 2201(b), 5841))

[45 FR 76611, Nov. 19, 1980; 46 FR 44735, Sept. 8, 1981]

[blocks in formation]
[blocks in formation]

51.51

Administrative action.

51.52 Public hearings.

51.53 Hearings-Operating licenses. 51.54 Required lists.

51.55 Costs of materials distributed to public.

51.56 Application of part to proceedings.

AUTHORITY: Sec. 161h., i., o., Pub. L. 83703, 68 Stat. 948 (42 U.S.C. 2201 (h), (i), and (o)); Sec. 102, Pub. L. 91-190, 83 Stat. 853 (42 U.S.C. 4332); Sec. 201, as amended, Pub. L. 93-438, 88 Stat. 1242; Pub. L. 94-79, 89 Stat. 413 (42 U.S.C. 5841)

SOURCE: 39 FR 26279, July 18, 1974, unless otherwise noted.

NOMENCLATURE CHANGES: 40 FR 8790, Mar.

3, 1975.

« PreviousContinue »