Page images
PDF
EPUB

derived from observations made before and after opposition, a serious error of the distance (radius vector) became apparent.

In 1843 John Couch Adams came out Senior Wrangler at Cambridge, and was free to undertake the research which as an undergraduate he had set himself to see whether the disturbances of Uranus could be explained by assuming a certain orbit, and position in that orbit, of a hypothetical planet even more distant than Uranus. Such an explanation had been suggested, but until 1843 no one had the boldness to attack the problem. Bessel had intended to try, but a fatal illness overtook him.

Adams first recalculated all known causes of disturbance, using the latest determinations of the planetary masses. Still the errors were nearly as great as ever. He could now, however, use these errors as being actually due to the perturbations produced by the unknown planet.

In 1844, assuming a circular orbit, and a mean distance agreeing with Bode's law, he obtained a first approximation to the position of the supposed planet. He then asked Professor Challis, of Cambridge, to procure the latest observations. of Uranus from Greenwich, which Airy immediately supplied. Then the whole work was recalculated from the beginning, with more exactness, and assuming a smaller mean distance.

In September, 1845, he handed to Challis the

elements of the hypothetical planet, its mass, and its apparent position for September 30th, 1845. On September 22nd Challis wrote to Airy explaining the matter, and declaring his belief in Adams's capabilities. When Adams called on him Airy was away from home, but at the end of October, 1845, he called again, and left a paper with full particulars of his results, which had, for the most part, reduced the discrepancies to about 1".

a matter of fact, it has since been found that the heliocentric place of the new planet then given was correct within about 2°.

Airy wrote expressing his interest, and asked for particulars about the radius vector. Adams did not then reply, as the answer to this question could be seen to be satisfactory by looking at the data already supplied.

He was a most unassuming man, and would not push himself forward. He may have felt, after all the work he had done, that Airy's very natural inquiry showed no proportionate desire to search for the planet. Anyway, the matter lay in embryo for nine months.

Meanwhile, one of the ablest French astronomers, Le Verrier, experienced in computing perturbations, was independently at work, knowing nothing about Adams. He applied to his calculations every possible refinement, and, considering the novelty of the problem, his calculation was one of the most brilliant in the records

of astronomy. In criticism it has been said that these were exhibitions of skill rather than helps to a solution of the particular problem, and that, in claiming to find the elements of the orbit within certain limits, he was claiming what was, under the circumstances, impossible, as the result proved.

In June, 1846, Le Verrier announced, in the Comptes Rendus de l'Academie des Sciences, that the longitude of the disturbing planet, for January 1st, 1847, was 325°, and that the probable error did not exceed 10°.

This result agreed so well with Adams's (within 1o) that Airy urged Challis to apply the splendid Northumberland equatorial, at Cambridge, to the search. Challis, however, had already prepared an exhaustive plan of attack which must in time settle the point. His first work was to observe, and make a catalogue, or chart, of all stars near Adams's position.

On August 31st, 1846, Le Verrier published the concluding part of his labours.

On September 18th, 1846, Le Verrier communicated his results to the Astronomers at Berlin, and asked them to assist in searching for the planet. By good luck Dr. Bremiker had just completed a star-chart of the very part of the heavens including Le Verrier's position; thus eliminating all of Challis's preliminary work. The letter was received in Berlin on September

23rd; and the same evening Galle found the new planet, of the eighth magnitude, the size of its disc agreeing with Le Verrier's prediction, and the heliocentric longitude agreeing within 57'. By this time Challis had recorded, without reduction, the observations of 3,150 stars, as a commencement for his search. On reducing these, he found a star, observed on August 12th, which was not in the same place on July 30th. This was the planet, and he had also observed it on August 4th.

The feeling of wonder, admiration, and enthusiasm aroused by this intellectual triumph was overwhelming. In the world of astronomy reminders are met every day of the terrible limitations of human reasoning powers; and every success that enables the mind's eye to see a little more clearly the meaning of things has always been heartily welcomed by those who have themselves been engaged in like researches. But, since the publication of the Principia, in 1687, there is probably no analytical success which has raised among astronomers such a feeling of admiration and gratitude as when Adams and Le Verrier showed the inequalities in Uranus's motion to mean that an unknown planet was in a certain place in the heavens, where it was found.

At the time there was an unpleasant display of international jealousy. The British people

thought that the earlier date of Adams's work, and of the observation by Challis, entitled him to at least an equal share of credit with Le Verrier. The French, on the other hand, who, on the announcement of the discovery by Galle, glowed with pride in the new proof of the great powers of their astronomer, Le Verrier, whose life had a long record of successes in calculation, were incredulous on being told that it had all been already done by a young man whom they had never heard of.

These displays of jealousy have long since passed away, and there is now universally an entente cordiale that to each of these great men belongs equally the merit of having so thoroughly calculated this inverse problem of perturbations as to lead to the immediate discovery of the unknown planet, since called Neptune.

It was soon found that the planet had been observed, and its position recorded as a fixed star by Lalande, on May 8th and 10th, 1795.

Mr. Lassel, in the same year, 1846, with his two-feet reflector, discovered a satellite, with retrograde motion, which gave the mass of the planet about a twentieth of that of Jupiter.

« PreviousContinue »