Page images

and in one case the faculae were discovered to be sailing over a spot apparently at some considerable height. These appearances may be partly due to a proper motion; but, so far as it went, this was a beautiful confirmation of Wilson's discovery. Howlett, however, in 1894, after thirty years of work, showed that the spots are not always depressions, being very subject to disturbance. The Kew photographs' contributed a vast amount of information about sun-spots, and they showed that the faculae generally follow the spots in their rotation round the sun. The constitution of the sun's photosphere, the layer which is the principal light-source on the sun, has always been a subject of great interest; and much was done by men with exceptionally keen eyesight, like Mr. Dawes. But it was a difficult subject, owing to the rapidity of the changes in appearance of the socalled rice-grains, about 1" in diameter. The rapid transformations and circulations of these rice-grains, if thoroughly studied, might lead to a much better knowledge of solar physics. This seemed almost hopeless, as it was found impossible to identify any “rice-grain '' in the turmoil after a few minutes. But M. Hansky, of Pulkowa (whose recent death is deplored), introduced successfully a scheme of photography, which might almost be called a solar cinematograph. He took photographs of the sun at intervals of fifteen or thirty seconds, and then enlarged selected portions of these two hundred times, giving a picture corresponding to a solar disc of six metres diameter. In these enlarged pictures he was able to trace the movements, and changes of shape and brightness, of individual rice-grains. Some granules become larger or smaller. Some seem to rise out of a mist, as it were, and to become clearer. Others grow feebler. Some are split in two. Some are rotated through a right angle in a minute or less, although each of the grains may be the size of Great Britain. Generally they move together in groups of very various velocities, up to forty kilometres a second. These movements seem to have definite relation to any sun-spots in the neighbourhood. From the results already obtained it seems certain that, if this method of observation be continued, it cannot fail to supply facts of the greatest importance. It is quite impossible to do justice here to the work of all those who are engaged on astronomical physics. The utmost that can be attempted is to give a fair idea of the directions of human thought and endeavour. During the last half-century America has made splendid progress, and an entirely new process of studying the photosphere has been independently perfected by Professor Hale at Chicago, and Deslandres at Paris." They have succeeded in photographing the sun's surface in monochromatic light, such as the light given off as one of the bright lines of hydrogen or of calcium, by means of the “Spectroheliograph.” The spectroscope is placed with its slit in the focus of an equatorial telescope, pointed to the sun, so that the circular image of the sun falls on the slit. At the other end of the spectroscope is the photographic plate. Just in front of this plate there is another slit parallel to the first, in the position where the image of the first slit formed by the K line of calcium falls. Thus is obtained a photograph of the section of the sun, made by the first slit, only in K light. As the image of the sun passes over the first slit the photographic plate is moved at the same rate and in the same direction behind the second slit; and as successive sections of the sun's image in the equatorial enter the apparatus, so are these sections successively thrown in their proper place on the photographic plate, always in K light. By using a high dispersion the faculae which give off K light can be correctly photographed, not only at the sun's edge, but all over his surface. The actual mechanical method of carrying out the observation is not quite so simple as what is here described. By choosing another line of the spectrum instead of calcium K — for example, the hydrogen line Ha – we obtain two photographs, one showing the appearance of the calcium floculi, and the other of the hydrogen floculi, on the same part of the solar surface; and nothing is more astonishing than to note the total want of resemblance in the forms shown on the two. This mode of research promises to afford many new and useful data. The spectroscope has revealed the fact that, broadly speaking, the sun is composed of the same materials as the earth. Angstrom was the first to map out all of the lines to be found in the solar spectrum. But Rowland, of Baltimore, after having perfected the art of making true gratings with equidistant lines ruled on metal for producing spectra, then proceeded to make a map of the solar spectrum on a large scale. In 1866 Lockyer' threw an image of the sun upon the slit of a spectroscope, and was thus enabled to compare the spectrum of a spot with that of the general solar surface. The observation proved the darkness of a spot to be caused by increased absorption of light, not only in the

* “Researches on Solar Physics,” by De la Rue, Stewart and Loewy; R. S. Phil. Trans., 1869, 1870.

* “The Sun as Photographed on the K line " ; Knowledge, London, 1903, p. 229.

[ocr errors]

dark lines, which are widened, but over the entire spectrum. In 1883 Young resolved this continuous obscurity into an infinite number of fine lines, which have all been traced in a shadowy way on to the general solar surface. Lockyer also detected displacements of the spectrum lines in the spots, such as would be produced by a rapid motion in the line of sight. It has been found that both uprushes and downrushes occur, but there is no marked predominance of either in a sun-spot. The velocity of motion thus indicated in the line of sight sometimes appears to amount to 320 miles a second. But it must be remembered that pressure of a gas has some effect in displacing the spectral lines. So we must go on, collecting data, until a time comes when the meaning of all the facts can be made clear. Total Solar Eclipses. – During total solar eclipses the time is so short, and the circumstances so impressive, that drawings of the appearance could not always be trusted. The red prominences of jagged form that are seen round the moon's edge, and the corona with its streamers radiating or interlacing, have much detail that can hardly be recorded in a sketch. By the aid of photography a number of records can be taken during the progress of totality. From a study of these the extent of the corona is demonstrated in one case to extend to at

« PreviousContinue »