Page images
PDF
EPUB
[blocks in formation]
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][subsumed][subsumed][merged small][graphic][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][ocr errors][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][ocr errors][subsumed][subsumed][ocr errors][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][ocr errors][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][merged small][merged small][merged small][merged small][merged small]
[merged small][merged small][merged small][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][graphic][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

Document III-3

Document title: President's Science Advisory Committee, “Report of the Ad Hoc Panel on Man-in-Space," December 16, 1960.

Source: NASA Historical Reference Collection, History Office, NASA Headquarters, Washington, D.C.

When NASA submitted its 1962 fiscal budget request to the Bureau of the Budget in May 1960, President Eisenhower learned for the first time of the agency's plans for a lunar landing program. He asked Presidential Science Advisor George Kistiatowsky to study "the goals, the missions and the costs" of the manned spaceflight program that NASA had in mind. The study was chaired by Brown University chemistry professor Donald Hornig and was presented to the president at a December 20, 1960, meeting. Eisenhower has been quoted as saying at this time that he was not willing to "hock his jewels" (referring to the decision by Spanish monarchs Ferdinand and Isabella to finance the initial expedition of Christopher Columbus) to send people to the Moon. The handwritten figures included in this report have been omitted.

[1]

Report of the Ad Hoc Panel on Man-in-Space

1. Introduction

We have been plunged into a race for the conquest of outer space. As a reason for this undertaking some look to the new and exciting scientific discoveries which are certain to be made. Others feel the challenge to transport man beyond frontiers he scarcely dared dream about until now. But at present the most impelling reason for our effort has been the international political situation which demands that we demonstrate our technological capabilities if we are to maintain our position of leadership. For all of these reasons we have embarked on a complex and costly adventure. It is the purpose of this report to clarify the goals, the missions and the costs of this effort in the foreseeable future, particularly with regard to the man-in-space program.*

This report has been made possible by the complete cooperation of the National Aeronautics and Space Administration. Officials of the NASA presented a very impressive description of their detailed plans for development, utilization and costs of the Saturn vehicle. They also provided technical information on possible follow-on vehicles, advanced propulsion techniques, and possible development and funding schedules, As far as we can tell, the NASA program is well thought through, and we believe that the mission, schedules and costs are as realistic as possible at this time. We had to project their plans beyond 1970, and such projections must be seen as only crude estimates.

[2] 2. The Man-in-Space Program

The initial American attempt to launch a manned capsule into orbital flight, Project Mercury, is already well advanced. It is a somewhat marginal effort, limited by the thrust of the Atlas booster. It has as its goal the launching of a one man capsule into orbit around the earth and its successful return to earth. The fact that the thrust of any available American booster is barely sufficient for the purpose means that it is difficult to achieve a high probability of a successful flight while also providing adequate safety for the Astronaut. Achieving reliability on both accounts will strain our capabilities. A difficult decision will soon be necessary as to when or whether a manned flight should be launched. The chief justification for pushing Project Mercury on the present time scale lies in the political desire either to be the first nation to send a man into orbit, or at least to be a close second.

*No attempt has been made to include manned space programs initiates, or to be initiated, by the DOD.

The marginal capability cannot be changed substantially until the Saturn booster becomes available. The NASA program for utilizing Saturn involves the development of the so-called Apollo spacecraft. The Saturn rocket which is being developed now (C-1) should be capable of launching a spacecraft of about 19,000 lbs into a low earth orbit. The proposed Apollo spacecraft weight of 15,000 lbs is well within this limit and would enable orbital qualification flights of the Apollo spacecraft (some manned) about 1966-1968. Such a manned flight would occur after about 25 Saturn C-1's have been tested and much depends on whether a demonstrated reliability can be attained in this rather small number of tests. The Apollo spacecraft, as presently envisioned, would carry three men who would exercise control from within the spacecraft and be able to return to earth within a fairly well defined area. The chief purpose of the early Apollo missions would be to gain experience in manned flight, to learn more of the problems encountered by crews under such new conditions and to aid in the development of a spacecraft for more ambitious missions. The full capabilities of the Saturn booster cannot be utilized until a large hydrogen-oxygen second stage has been developed. The C-2 Saturn, utilizing the new high-performance stage, is expected to enter the test phase about 1965 and may be available for manned flight (No. 17) in 1968 or 1969. There is again a question as to whether 16 flights will be enough to demonstrate sufficient reliability for its use in manned missions.

The Saturn C-2 is expected to lift about 40,000 lbs into low earth orbit and it is planned to utilize this capability to send up an "orbiting laboratory" capable of staying aloft for two weeks or more. It is our opinion that an [3] orbiting laboratory of this size could produce considerably more scientific information if it were wholly instrumented rather than manned. Alternatively, we believe that the valid scientific missions to be performed by a manned laboratory of this size could be accomplished using a much smaller unmanned instrumented spacecraft which would in turn require a smaller booster system. The large manned orbiting laboratory might be of value as a life sciences laboratory to acquire physiological and psychological data on humans, to study life support mechanisms, to perform biological studies, and to carry out engineering tests under gravity free conditions. In short, its major mission appears to be the preparation for further steps in the manned exploration of space.

To take such steps, the Apollo spacecraft may be launched into successively more elliptical orbits which carry it further and further from the earth, culminating about 1970 in a manned flight around the moon and back to the earth. The Apollo program in itself does not reach what might be considered to be the next major goal in manned space flight, i.e. manned landing on the moon. It does, however, appear to represent a logical approach to that goal in that it will develop space craft and crews for space flight and will enable us to gain experience in navigation and successful return from increasingly difficult trips. In the meantime it should be possible to obtain far more detailed information about the moon by unmanned spacecraft and lunar landing craft than the crew of the circumlunar flight could gain.

None of the boosters now planned for development are capable of landing on the moon with sufficient auxiliary equipment to return the crew safely to earth. To achieve this goal, a new program much larger than Saturn will be needed. It is likely to take one of three forms:

1. An all-chemical liquid-fueled rocket, the Nova, might be developed to take the trip directly. It would require a booster with about 6 times the thrust of the Saturn and utilyzing either kerosene or hydrogen-oxygen. The upper stage of the Nova would require hydrogen-oxygen and at least one stage would probably be an existing stage from the Saturn development program.

2. If a suitable nuclear upper stage could be developed, the Nova vehicle could conceivably become a combination chemical-nuclear system. This system would still require the development of a first stage chemical booster with thrust of the same order of magnitude as that described for the all chemical system. If the nuclear development should be as successful as its proponents hope, it might open the way for future developments beyond

« PreviousContinue »