Page images
PDF
EPUB

C =

(μg Pb/ml x 100 ml/strip x 12 strips/filter) - Fb

VSTP

where:

C = Concentration, μg Pb/sm3.

μg Pb/ml = Lead concentration determined from section 8.

100 ml/strip = Total sample volume.

12 strips = Total useable filter area, 8"×9′′. Exposed area of one strip, 3⁄44′′×7′′.

Filter = Total area of one strip, 3/4′′×8′′.

Fb = Lead concentration of blank filter, μg, from section 6.1.1.2.3.

VSTP Air volume from section 10.2.

11. Quality control.

3/4"x8" glass fiber filter strips containing 80 to 2000 μg Pb/strip (as lead salts) and blank strips with zero Pb content should be used to determine if the method-as being used-has any bias. Quality control charts should be established to monitor differences between measured and true values. The frequency of such checks will depend on the local quality control program.

To minimize the possibility of generating unreliable data, the user should follow practices established for assuring the quality of air pollution data, (13) and take part in EPA's semiannual audit program for lead analyses.

12. Trouble shooting.

1. During extraction of lead by the hot extraction procedure, it is important to keep the sample covered so that corrosion products-formed on fume hood surfaces which may contain lead-are not deposited in the extract.

2. The sample acid concentration should minimize corrosion of the nebulizer. However, different nebulizers may require lower acid concentrations. Lower concentrations can be used provided samples and standards have the same acid concentration.

3. Ashing of particulate samples has been found, by EPA and contractor laboratories, to be unnecessary in lead analyses by atomic absorption. Therefore, this step was omitted from the method.

4. Filtration of extracted samples, to remove particulate matter, was specifically excluded from sample preparation, because some analysts have observed losses of lead due to filtration.

5. If suspended solids should clog the nebulizer during analysis of samples, centrifuge the sample to remove the solids. 13. Authority.

(Secs. 109 and 301(a), Clean Air Act, as amended (42 U.S.C. 7409, 7601(a)))

14. References.

1. Scott, D. R. et al. "Atomic Absorption and Optical Emission Analysis of NASN Atmospheric Particulate Samples for Lead." Envir. Sci. and Tech., 10, 877-880 (1976).

2. Skogerboe, R. K. et al. "Monitoring for Lead in the Environment." pp. 57-66, Department of Chemistry, Colorado State University, Fort Collins, CO 80523. Submitted to National Science Foundation for publications, 1976.

3. Zdrojewski, A. et al. "The Accurate Measurement of Lead in Airborne Particulates." Inter. J. Environ. Anal. Chem., 2, 63-77 (1972).

4. Slavin, W., "Atomic Absorption Spectroscopy." Published by Interscience Company, New York, NY (1968).

5. Kirkbright, G. F., and Sargent, M., "Atomic Absorption and Fluorescence Spectroscopy." Published by Academic Press, New York, NY 1974.

6. Burnham, C. D. et al., "Determination of Lead in Airborne Particulates in Chicago and Cook County, IL, by Atomic Absorption Spectroscopy." Envir. Sci. and Tech., 3, 472475 (1969).

7. "Proposed Recommended Practices for Atomic Absorption Spectrometry." ASTM Book of Standards, part 30, pp. 1596-1608 (July 1973).

8. Koirttyohann, S. R. and Wen, J. W., "Critical Study of the APCD-MIBK Extraction System for Atomic Absorption." Anal. Chem., 45, 1986-1989 (1973).

9. Collaborative Study of Reference Method for the Determination of Suspended Particulates in the Atmosphere (High Volume Method). Obtainable from National Technical Information Service, Department of Commerce, Port Royal Road, Springfield, VA 22151, as PB-205891.

10. [Reserved]

11. Dubois, L., et al., "The Metal Content of Urban Air." JAPCA, 16, 77–78 (1966).

12. EPA Report No. 600/4-77-034, June 1977, "Los Angeles Catalyst Study Symposium." Page 223.

13. Quality Assurance Handbook for Air Pollution Measurement System. Volume 1-Principles. EPA-600/9-76-005, March 1976.

14. Thompson, R. J. et al., "Analysis of Selected Elements in Atmospheric Particulate Matter by Atomic Absorption." Atomic Absorption Newsletter, 9, No. 3, May-June 1970.

15. To be published. EPA, QAB, EMSL, RTP, N.C. 27711

[merged small][merged small][graphic][subsumed][subsumed][subsumed][merged small][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][subsumed][subsumed][subsumed][subsumed][merged small][subsumed][subsumed]
[graphic][ocr errors][ocr errors][ocr errors][merged small][ocr errors][ocr errors][subsumed][ocr errors][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][merged small]

(Secs. 109, 301(a) of the Clean Air Act, as amended (42 U.S.C. 7409, 7601(a)); secs. 110, 301(a) and 319 of the Clean Air Act (42 U.S.C. 7410, 7601(a), 7619))

[43 FR 46258, Oct. 5, 1978; 44 FR 37915, June 29, 1979, as amended at 46 FR 44163, Sept. 3, 1981; 52 FR 24664, July 1, 1987]

APPENDIX H TO PART 50-INTERPRETA

TION OF THE 1-HOUR PRIMARY AND
SECONDARY NATIONAL AMBIENT AIR
QUALITY STANDARDS FOR OZONE

1. GENERAL

This appendix explains how to determine when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm (235 μg/m3) is equal to or less than 1. An expanded discussion of these procedures and associated ex

amples are contained in the "Guideline for Interpretation of Ozone Air Quality Standards." For purposes of clarity in the following discussion, it is convenient to use the term "exceedance" to describe a daily maximum hourly average ozone measurement that is greater than the level of the standard. Therefore, the phrase "expected number of days with maximum hourly average ozone concentrations above the level of the standard" may be simply stated as the "expected number of exceedances."

The basic principle in making this determination is relatively straightforward. Most of the complications that arise in determining the expected number of annual exceedances relate to accounting for incomplete sampling. In general, the average number of exceedances per calendar year must be less than or equal to 1. In its simplest form, the number of exceedances at a monitoring site would be recorded for each calendar year and then averaged over the past 3 calendar years to determine if this average is less than or equal to 1.

2. INTERPRETATION OF EXPECTED

EXCEEDANCES

The ozone standard states that the expected number of exceedances per year must be less than or equal to 1. The statistical term "expected number" is basically an arithmetic average. The following example explains what it would mean for an area to be in compliance with this type of standard. Suppose a monitoring station records a valid daily maximum hourly average ozone value for every day of the year during the past 3 years. At the end of each year, the number of days with maximum hourly concentrations above 0.12 ppm is determined and this number is averaged with the results of previous years. As long as this average remains "less than or equal to 1," the area is in compli

ance.

3. ESTIMATING THE NUMBER OF EXCEEDANCES FOR A YEAR

In general, a valid daily maximum hourly average value may not be available for each day of the year, and it will be necessary to account for these missing values when estimating the number of exceedances for a particular calendar year. The purpose of these computations is to determine if the expected number of exceedances per year is less than or equal to 1. Thus, if a site has two or more observed exceedances each year, the standard is not met and it is not necessary to use the procedures of this section to account for incomplete sampling.

The term "missing value" is used here in the general sense to describe all days that do not have an associated ozone measurement. In some cases, a measurement might actually have been missed but in other cases no measurement may have been scheduled for that day. A daily maximum ozone value is defined to be the highest hourly ozone value recorded for the day. This daily maximum value is considered to be valid if 75 percent of the hours from 9:01 a.m. to 9:00 p.m. (LST) were measured or if the highest hour is greater than the level of the standard.

In some areas, the seasonal pattern of ozone is so pronounced that entire months need not be sampled because it is extremely unlikely that the standard would be exceed

ed. Any such waiver of the ozone monitoring requirement would be handled under provisions of 40 CFR, part 58. Some allowance should also be made for days for which valid daily maximum hourly values were not obtained but which would quite likely have been below the standard. Such an allowance introduces a complication in that it becomes necessary to define under what conditions a missing value may be assumed to have been less than the level of the standard. The following criterion may be used for ozone:

A missing daily maximum ozone value may be assumed to be less than the level of the standard if the valid daily maxima on both the preceding day and the following day do not exceed 75 percent of the level of the standard.

Let z denote the number of missing daily maximum values that may be assumed to be! less than the standard. Then the following formula shall be used to estimate the expected number of exceedances for the year:

e=v+[(v/n) * (N-n-z)]

(*Indicates multiplication.)

where:

(1)

e the estimated number of exceedances for the year,

N = the number of required monitoring days in the year,

n = the number of valid daily maxima,

v = the number of daily values above the level of the standard, and

z = the number of days assumed to be less than the standard level.

This estimated number of exceedances shall be rounded to one decimal place (fractional parts equal to 0.05 round up).

It should be noted that N will be the total number of days in the year unless the appropriate Regional Administrator has granted a waiver under the provisions of 40 CFR part 58.

The above equation may be interpreted intuitively in the following manner. The estimated number of exceedances is equal to the observed number of exceedances (v) plus an increment that accounts for incomplete sampling. There were (N-n) missing values for the year but a certain number of these, namely z, were assumed to be less than the standard. Therefore, (N-n-z) missing values are considered to include possible exceedances. The fraction of measured values that are above the level of the standard is v/n. It is assumed that this same fraction applies to the (N-n-z) missing values and that (v/n)*(N-n-z) of these values would also have exceeded the level of the standard.

[44 FR 8220, Feb. 8, 1979, as amended at 62 FR 38895, July 18, 1997]

ich

[ocr errors]

APPENDIX I TO PART 50-INTERPRETATION OF THE 8-HOUR PRIMARY AND SECONDARY NATIONAL AMBIENT AIR QUALITY STANDARDS FOR OZONE

1. General.

This appendix explains the data handling conventions and computations necessary for determining whether the national 8-hour priLave th mary and secondary ambient air quality standards for ozone specified in §50.10 are met at an ambient ozone air quality monitoring site. Ozone is measured in the ambie lerent air by a reference method based on appendix D of this part. Data reporting, data win handling, and computation procedures to be eld used in making comparisons between reported ozone concentrations and the level of the ozone standard are specified in the following sections. Whether to exclude, retain, or make adjustments to the data affected by stratospheric ozone intrusion or other natural events is subject to the approval of the appropriate Regional Administrator.

[ocr errors]
[ocr errors][ocr errors]

the

2. Primary and Secondary Ambient Air Quality Standards for Ozone.

2.1 Data Reporting and Handling Conventions.

2.1.1 Computing 8-hour averages. Hourly average concentrations shall be reported in parts per million (ppm) to the third decimal place, with additional digits to the right being truncated. Running 8-hour averages shall be computed from the hourly ozone concentration data for each hour of the year and the result shall be stored in the first, or start, hour of the 8-hour period. An 8-hour average shall be considered valid if at least 75% of the hourly averages for the 8-hour period are available. In the event that only 6 (or 7) hourly averages are available, the 8hour average shall be computed on the basis of the hours available using 6 (or 7) as the divisor. (8-hour periods with three or more missing hours shall not be ignored if, after substituting one-half the minimum detectable limit for the missing hourly concentrations, the 8-hour average concentration is greater than the level of the standard.) The computed 8-hour average ozone concentrations shall be reported to three decimal places (the insignificant digits to the right of the third decimal place are truncated, consistent with the data handling procedures for the reported data.)

2.1.2 Daily maximum 8-hour average concentrations. (a) There are 24 possible running 8-hour average ozone concentrations for each calendar day during the ozone monitoring season. (Ozone monitoring seasons vary by geographic location as designated in part 58, appendix D to this chapter.) The daily maximum 8-hour concentration for a given calendar day is the highest of the 24 possible 8hour average concentrations computed for that day. This process is repeated, yielding a daily maximum 8-hour average ozone con

centration for each calendar day with ambient ozone monitoring data. Because the 8hour averages are recorded in the start hour, the daily maximum 8-hour concentrations from two consecutive days may have some hourly concentrations in common. Generally, overlapping daily maximum 8-hour averages are not likely, except in those nonurban monitoring locations with less pronounced diurnal variation in hourly concentrations.

(b) An ozone monitoring day shall be counted as a valid day if valid 8-hour averages are available for at least 75% of possible hours in the day (i.e., at least 18 of the 24 averages). In the event that less than 75% of the 8-hour averages are available, a day shall also be counted as a valid day if the daily maximum 8-hour average concentration for that day is greater than the level of the ambient standard.

2.2 Primary and Secondary Standard-related Summary Statistic. The standard-related summary statistic is the annual fourth-highest daily maximum 8-hour ozone concentration, expressed in parts per million, averaged over three years. The 3-year average shall be computed using the three most recent, consecutive calendar years of monitoring data meeting the data completeness requirements described in this appendix. The computed 3year average of the annual fourth-highest daily maximum 8-hour average ozone concentrations shall be expressed to three decimal places (the remaining digits to the right are truncated.)

2.3 Comparisons with the Primary and Secondary Ozone Standards. (a) The primary and secondary ozone ambient air quality standards are met at an ambient air quality monitoring site when the 3-year average of the annual fourth-highest daily maximum 8-hour average ozone concentration is less than or equal to 0.08 ppm. The number of significant figures in the level of the standard dictates the rounding convention for comparing the computed 3-year average annual fourth-highest daily maximum 8-hour average ozone concentration with the level of the standard. The third decimal place of the computed value is rounded, with values equal to or greater than 5 rounding up. Thus, a computed 3-year average ozone concentration of 0.085 ppm is the smallest value that is greater than 0.08 ppm.

(b) This comparison shall be based on three consecutive, complete calendar years of air quality monitoring data. This requirement is met for the three year period at a monitoring site if daily maximum 8-hour average concentrations are available for at least 90%, on average, of the days during the designated ozone monitoring season, with a minimum data completeness in any one year of at least 75% of the designated sampling days. When

« PreviousContinue »